Training Strategy for Aircraft Collision
Avoidance with Deep Reinforcement
Learning

Osmany Corteguera
Dept. of EECS
MIT
osmanyc @mit.edu

Abstract—The aircraft collision avoidance
problem consists of trying to resolve a conflict
between two aircraft in the airspace to avoid a
collision. This problem has seen a lot of work
in a tabular reinforcement learning approach. In
this work we explore deep reinforcement learning
to tackle the problem. We build a new Python
environment that simulates aircraft encounters
in a 2D continuous plane, with an ownship and
an intruder aircraft. We test how the geometry
of the encounter, the frequency of collisions in
the training set, and the structure of the reward
function affect the policy learned. We present
empirical results showing how the composition
of the training data and reward structure affect
the performance and training time of the policies
learned.

I. BACKGROUND

The problem of airborne collision avoidance
has been a topic of interest for many years. A
typical metric is called a near mid-air collision
(NMAC). It captures incidences where two air-
crafts come within a set distance to each other.
In response to airborne collisions in the US,
the Traffic Collision Avoidance System (TCAS)
was developed [1]. TCAS works by sensing
aircraft around its airspace and issuing alerts
to the pilot with suggested maneuvers to help
them avoid these nearby aircraft.

TCAS, though, has many limitations. It is built
as a rule-based decision system, with these
rules being heuristics developed by teams of
experts over years of development. The result-
ing system is therefore a very large base of
interrelated pieces, which makes the system
very hard to improve and change.

These limitations have become more important
to address as the airspace rapidly changes, with
new types of aircraft and higher density of
aircraft in the airspace. Another system, Air-
borne Collision Avoidance System X (ACAS

Mohammad Islam
Dept. of AeroAstro

MIT

moislam @mit.edu

Alexander Joerger
Dept. of AeroAstro
MIT
ajoerger @mit.edu

X), aims to address the limitations of TCAS
and further improve on its safety. ACAS X uses
a dynamic programming (DP), optimization-
based approach to select the best alert to issue
to the aircraft at any given moment.

The decision-making logic of ACAS X can be
modeled as a Markov Decision Process (MDP),
which is then solved using the Value-Iteration
algorithm. The solution computed is in the form
of a state-action value function, which is turned
into a policy by greedily choosing the best
action at each state.

A problem with this approach is that the
runtime of DP scales exponentially with the
number of variables in the MDP. An airborne
encounter has many variables, like the posi-
tion coordinates and angles of heading for the
aircraft in conflict, as well as their first and
second derivatives, among others. ACAS X
addresses this problem by training independent
decision policies for the vertical and horizontal
dimensions, and combining variables in each
of these policies to decrease the total number
of variables present. The fact that different
policies are trained means that the decisions
learned are often sub-optimal. Another issue
is that to use DP, the state space must be
discretized, which potentially further degrades
performance.

Because the Discrete Value Iteration approach
is limited in its input space, it is an open ques-
tion whether different approaches can perform
better without that limitation. An alternative
approach to DP is that of Deep Reinforce-
ment Learning (DRL). The salient difference
between DP and DRL is that DP uses large
tables to store its state value function, while in
DRL a neural network acts as the state value
function.

The advantage of DRL is that the training time
does not scale exponentially in the number of
features as it does in DP, so the large number of
variables inherent to an airborne encounter can
be used to form a richer state representation.
It is also easier to work with the continuous
input features of the state because neural net-
works do not require inputs that are discretized.
Another advantage is that neural networks have
relatively light memory footprints. While logic
tables from DP can take upwards to 10GB of
storage, neural networks can get comparable
performance with orders of magnitudes fewer
parameters [2].

The downside of using DRL is that, unlike
DP, there are no strong convergence guarantees.
The value function learned might converge to
a sub-optimal one, or it might not converge at
all.

II. RESEARCH QUESTIONS

The objective of this project is to explore
ways to alleviate the downsides of training
a policy with DRL. Specifically, we look at
how the training data we feed to the algorithm
affects the learned policy. While a DP solution
usually sweeps the entire state space each it-
eration to update a value function, we don’t
have the same luxury in the DRL setting, given
that our state space is intractably large to sweep
over.

This leaves us with the option of using either
episodic data generated from a simulator, or
state transitions sampled from a model of the
environment. We explore the first option in
this paper, since the most well-known results
in DRL have come from using off-policy RL
algorithms in episodic settings [3].

We seek to answer the following questions
relating to training:

1) How do the training encounters affect
the learned policies? In particular, are
there specific training encounter genera-
tion processes that work well for DRL
models?

2) How do the specified rewards affect the
learned policies?

The first set of questions above are ex-
plored though various experiments that use pre-
specified training encounters. These training
encounters can be generated manually or via
Markov chains, random sampling, or single
stretches of maneuvers. An important aspect of
training with pre-defined training encounters is

the ratio of encounters with NMAC and without
NMAC contained in the training set. The sec-
ond question is studied by exploring the effects
of different rewards and the effects of reward
shaping on the learned policies. Intuitively, we
expect the rewards to govern the learned policy.
We explore these questions while considering
both a discrete and continuous state space. The
discrete state space provides a more straight-
forward implementation of our DRL logic and
helped us built intuition on how the learned
policies are influenced by different training
parameters and strategies. The continuous state
space provided a more realistic model of the
airspace and served as a natural extension to
our environment after our studies in the discrete
space.

III. THEORY

In order to generate a sequence of appro-
priate maneuvers to effectively resolve close
encounters between aircraft, we represent en-
counters within a mathematical framework. We
can describe an encounter as an MDP [4].
An MDP is defined by the tuple {S, A, T, R},
where

e S is the set of states s. Each member
of S describes a state of the encounter,
which includes information like the verti-
cal separation, ownship vertical rate, etc.
Essentially, each s € S is a snapshot of
the encounter at one moment in time.

o A(s) — Ag is the set of actions a that can
be issued at every state. These can include
climb, descend, turn right, etc.

e T(s,a) — &' is the stochastic transition
function from state s and action a, to state
s’. This function is stochastic due in large
part to the uncertainty about the accelera-
tions applied by the intruder aircraft.

e R(s,a) — r is the reward distribution
from being at state s and taking action a.
We use negative rewards to discourage the
aircraft from engaging in NMACs, issuing
too many alerts, etc. For example, having
an NMAC can result in a reward of -
100, while issuing an alert can result in
a reward of -1.

The MDP model formalizes the idea of an agent
acting in an environment where the state is not
completely known. An agent acts in a MDP
according to a policy, 7(s) — a, which outputs
an action a at any given state. The goal of
the agent is to choose the sequence of actions
that maximize the rewards it receives from the

environment.

This is the aim of reinforcement learning algo-
rithms - to learn an optimal policy which will
maximize the overall reward across steps for
any initial state. Mathematically, this is written
as

oo
Find 7* = argmax_E Z’th(st, ag)|so =s
t=0
Q-learning is one set of techniques used in
reinforcement learning. Here we define a Q-
function, which gives the expected reward for
starting at a particular state s and taking the
action a, then following policy 7.

Qnr(s,a) =

E Z”th(st,at)\so =s,a0=a,T
t=0

The optimal policy 7*(s) maximizes the re-
turns, and has a corresponding Q-function de-
noted by Q*(s,a). Q-learning is guaranteed to
find the optimal Q function in the tabular case,
as long as each (s,a) pair is visited infinitely
often [4].

In this work, we employ a form of parametric
Q-learning known as DQN (deep Q-network).
In this setting, the Q-function is modeled as
a neural network for which we wish to find
parameters 6 such that Q(s,a;0) ~ Q*(s,a)
(the optimal Q-function is approximated accu-
rately). Fig. 1 shows a typical DQN architec-
ture. One must obtain appropriate parameters

Convalution Convalution Fully connected

-
S
8
2
3

!

of] B /m

v/ =

= | B = b ==

/- =
PBoem -0 ie m*

u :

o | EH i\ !

; :

o] B \e

Fig. 1: Example DQN architecture [5]

to approximate the Q-function for the optimal
policy correctly. This can be via a gradient
descent update. The DQN algorithm can be
used to find parameters such that the neural
network approximates the optimal Q function,
and ultimately so that the optimal policy 7*(s)
is obeyed. Many techniques are employed in
conjunction with DQN to help it succeed in
finding an optimal policy (experience replay,
separate target networks, reward clipping, etc.).

IV. MODEL

In this work, we used OpenAl Baselines’
implementation of DQN [6]. Our setting in-
volves a continuous state-space and discrete
action space simulation environment.

The overall aim of training is to learn policies
that enable our aircraft (agent) to reach a goal
location (representing an airport for instance)
in as few steps as possible without colliding
with any objects. Potential objects in the en-
vironment are the agent and another aircraft
(intruder). The model we develop in this work
provides a framework that one can use to per-
form training of an aircraft in discrete and con-
tinuous spaces using reinforcement learning.
It provides an avenue through which we can
begin to gain insight into the training process
in reinforcement learning and understand the
essential ingredients for effective training (i.e.
good reward structure, useful training sets) so
that RL can be used to learn optimal policies.
To this end, our paper focuses on training
requirements for our ownship given indepen-
dently moving intruders. Our metrics for as-
sessing the efficacy of the learned policies are

o Proportion of episodes with collisions
(collisions occur when agent comes within
p distance of intruders),

« Time to reach goal state per episode (dis-
crete space only), and

o Number of commands issued per episode
(continuous space only).

These metrics assess whether the agent can
avoid intruders, while reaching the goal as ef-
ficiently as possible. Hence, the metrics assess
the learned policies. The metrics are calculated
by building a static set of validation episodes,
and running the learned policies in these same
episodes.

V. NOVELTY OF WORK

The problem investigated in this paper is dif-
ferent from other applications of DRL because:
e Successes in DRL have come from de-
terministic environments
Atari benchmarks, MuJoCo benchmarks,
and 2 player perfect information games
all have deterministic environments. The
sources of stochasticity in these environ-
ments is usually due to the agent’s own
policy. Thus, there’s a big weight given to
exploration. In our setting, the intruder’s
behavior is stochastic, and it is not even
clear what the patterns in it are.

o Reward clipping is not an option
A strategy used in the DQN paper is to clip
all Atari rewards to be either -1 or 1. The
agent thus learns a reward that maximizes
the frequency of rewards. This is pre-
sumably an easier value function to learn
than if different reward magnitudes were
used. Here, we use the different reward
magnitudes to define a trade-off between
safety (low collision rate) and operability
(low alert rate). This difference makes our
environment strictly more difficult than the
environment solved by DQN in its Atari
benchmarks.

o No pre-defined simulation environment
If we ran this on an already-built simu-
lation environment, collecting data would
have been trivial, since all we have to do
is run the environment itself. All that is
left to modify is the agent’s own policy
so that a good balance of exploration vs
exploitation is reached. In our problem
setting, we are building the simulation
environment ourselves, and thus defining
the the environment’s behavior. This adds
more degrees of freedom to our learning
objective (what intruder behavior are we
optimizing for? what intruder behavior do
we train on?).

VI. DISCRETE STATE SPACE
A. Approach

As a proof of concept, we use an OpenAl
Baselines implementation of DQN in order to
learn a policy to reach our goal while avoiding
a collision with the intruder aircraft in a two-
dimensional discrete grid world environment.
Fig. 2 gives a cartoon of a grid world. The state
space consists of absolute coordinates.

We report a subset of the results of training

T |Goal

@|Adversary

Aircraft Building

Fig. 2: Cartoon of grid world environment

on a 10 by 10 units grid space. The agent can
perform four different actions (movement in
the four cardinal directions). In DRL, training
data is generated by performing episodes using
the environment (there is no data a priori). As
episodes are performed, the agent learns how
to best navigate the environment in order to

maximize its own reward.

We treat the number of agent training steps
and the reward structure as hyperparameters for
the training of our DQN approach. A negative
reward is awarded to the agent for each step
taken. Collisions with the intruder also entail
a penalty. This reward structure is meant to
motivate the agent to reach the goal in the
shortest possible time while avoiding collisions
with the intruder.

The intruder acts independently from the agent
("at random”). Two encounter types have been
considered for the discrete environment:

1) The motion of the intruder is restricted
towards a certain direction, e.g., from
top/right to bottom/left of the grid world.
However, the specific path is not pre-
scribed, but chosen at random by the
intruder. Hence, each episode features a
different intruder behavior. Once the in-
truder reaches the edge of the grid world,
it re-spawns at its initial position.

2) The intruder can move freely at ran-
dom without any restriction of its mo-
tion. Here, we designed the experiment
to determine how much exploration was
needed for the agent to learn an effective
policy. To this end, we trained policies
where the agent would greedily select an
action with respect to its learned state-
action function with probability 1 — p,
and with probability p select an action
uniformly at random. We refer to this as
a p-greedy training policy.

B. Experimental Results

1) Restricted Intruder Motion Training Pol-

icy: After training under this encounter type,
the agent consistently moves towards the goal
while avoiding the intruder. Fig. 3 shows that
the learned policies converge towards an opti-
mal policy. As a reference, the reward for each
taken step is —1. Hence, the optimal policy has
a reward of —19 as it takes 19 steps to reach
the goal in the chosen setup (going from top
left to bottom right of the grid).
The number of steps is sufficient for all investi-
gated reward training to level out to their long-
term value. Hence, we can compare the effects
of rewards on the learning rate. The number
of performed episodes increases with a larger
penalty for NMACs. More episodes correspond
to more training epochs. We expect that more
performed episodes with the same number of
total steps corresponds to more efficient train-
ing.

2D Grid World (10x10), single intruder

o -10° 700
% Ryumac Optimal policy /
3 [l=-0 P e 600
B -- -10 . =
<3 it #1500
o -
I Rl n
& o 400 &
2 102 e g
[N 2
B 300 2
°
2 200
[
g
& 100
Q
Z 10 o

05 1 15 2

Steps «10%

Fig. 3: Learning curve on 2D grid world en-
vironment (10x10): Rewards for NMAC with
intruder (negative) affect training speed

We can also see that the chosen rewards for
NMAC:s affect the rate of learning. The rewards
vs. steps gradient is larger for NMAC-penalties
of —10 and —50 than for —1. As a result, a
near-optimal policy is learned more quickly.
However, there is an optimal reward. The train-
ing efficiency decreases if the negative rewards
become too large, i.e., the learning curve for
Ryyac = —50 in Fig. 3 reaches the near-
optimal policy more slowly than the training
with Ryarac = —10.

2) p-Greedy Training Policy: After training,
the agent consistently moves towards the goal
while avoiding the intruder. To test the perfor-
mance of our learned policy, we developed a
set of 1000 validation tests. In these tests the
motion of the intruder aircraft in our environ-
ment is completely specified. This gives us a
basis to test the efficacy of different policies
learned by the aircraft during our training pro-
cess. Our main metrics here are the collision
rate (proportion of episodes with collisions)
and episode length (encapsulating our previous
metrics of number of commands issued and
time to reach goal state). We explore how these
metrics change as our probability p changes.
As we can see in Table I, the value of p did
not have an effect on the number of collisions.
The policies learned were all able to avoid
the intruder when run on our validation set of
encounters. The average episode lengths tell a
similar story. Most policies were optimal in this
metric. The one outlier is most likely due to
variance in the policy learned (we only ran one
seed per p value), rather than an actual trend.

Exploration Probability

001 005 01 02 03

Collision Rate 0 0 0 0 0 0
Avg. Steps 19 19 135 19 19 19

TABLE I: p-Greedy Training Policy: Perfor-
mance metrics for each setting of exploration

VII. LESSONS LEARNED FROM DISCRETE
STATE SPACE

Our initial experiments show that DRL can

be used to teach the aircraft to achieve our
objective. We observe that the reward structure
heavily influences the learning of an optimal
policy by the aircraft. This learning behav-
ior motivated our research questions regarding
training and drove us to explore different re-
ward values for different actions (reaching the
goal, taking a step, crashing into an aircraft).
If the rewards are ill-conditioned, the agent
might ignore the long-term goal of reaching
the target location all together and simply learn
a policy to stay far away from the intruder
without moving towards the goal.
We found that the agent performed well using
its learned policy when facing an intruder if the
intruder behavior was observed during training.
However, when facing an intruder behavior that
had not been observed prior to validation (e.g.
had not been observed in the training set), the
agent begins to prioritize avoiding the aircraft
over reaching the goal.

VIII. 2D CONTINUOUS STATE SPACE
A. Setup

After learning optimal policies for the
simple grid world environment, we decided to
build an environment that better approximates
the dynamics of a real airborne encounter.
Our setup involves the following scenario in
which there is a close encounter between the
agent and an intruder. Our goal is to avoid the
encounter while issuing as few maneuvers as
possible. Unlike the grid world setting, there
is no longer a distinct goal position. This is
similar to an aircraft encounter in a real life,
where the principal goal is to clear the conflict.
After the conflict is cleared, the aircraft can
resume its desired flight path. The updated
setup better reflects this real-life scenario.

We assume that there is no coordination
between the agent and the intruder. The two
aircraft cannot communicate, so the agent

needs to be prepared to avoid any type of
behavior by the intruder. There has been
some work into ways in which aircraft can
coordinate their maneuvers by communicating
through messages [7], which could be used to
extend the solution we build in this project to
cooperative scenarios.

Both the agent and the intruder are advanced
at each timestep through linear dynamics, so
that turns can occur instantaneously. We limit
the rate at which the aircraft can turn to 3
deg/s, so that maneuvers need to be taken far
in advance of when a collision is expected in
order to avoid it. This lag between command
and execution models the system inertia of a
real-life scenario.

The transition kernel for an airborne encounter
is difficult to estimate. Previous approaches
have used sets of aircraft encounters in the
US airspace gathered from radar, and used
that data to build a directed graphical model
that approximates the transition kernel [8].
In this work, we seek to understand whether
a variety of other encounter geometries can
achieve good performance. The transition
kernel in our approach is implicitly defined
by the environment and by the intruder
behavior. Further work can be done with our
environment setup by adding white noise to
the state measurements after each transition.

B. Approach

The conducted experiments were designed to
answer our research questions. How can we
best design a training set of data to learn a good
policy quickly? Three questions were addressed
in detail:

1) How do different intruder behaviors
affect the policy learned?
Intuitively, we want the intruder behavior
to be a superset of the real behavior that
we would encounter in the real airspace,
so that the agent can effectively deal with
any behavior robustly. To this end, we
designed an experiment where we trained
policies with different sets of encounters:

« Sticky policy where the intruder ran-
domly chooses and sticks to an ac-
tion for some length of time, then
switches to a different action,

« Random where the intruder takes a
random action at every timestep,

o Single action where the intruder
starts out with an action for a random

length of time and transitions to no
action for the rest of the environ-
ment, and
« None where the intruder takes no
action and flies straight for the whole
encounter.
2) What is the best ratio of NMAC to no
NMAC to have in the training set?
If we have too many NMACs, then the
agent will learn to always alert, while
having too few NMACs will make the
agent ignore threats. We want to figure
out, given a set reward structure, which
ratio is best.
3) How do the rewards affect the policies
learned?
Ng, Harada, and Russell [9] introduce
the concept of shaping rewards that pre-
serve optimal policies. They prove that
if rewards are based off the difference
between a potential function over states,
then the optimal policy can still be
learned, but learning can be faster if the
reward provides a good heuristic. We
evaluate the impact of a shaping reward,
using the distance between the aircraft as
the potential function. This approach has
the effect of penalizing the aircraft for
getting close and rewarding them for fly-
ing apart. We define ¢(s) = d, where s is
a state and d is the distance between air-
craft. The shaping reward added at each
step is then 7/(s¢, $¢41) = Yo(St41 —
¢(s¢)), where -~y is the discount factor.
The way we conduct these experiments is by
generating actions for the intruder according
to a Markov chain. The Markov chain has 3
states, corresponding to the possible actions
an intruder can take: (NONE, LEFT, RIGHT)
- shown in Fig. 4. We modified the transi-
tion probabilities depending on what kind of
encounter we wanted (see Appendix A for
details).

Qe 9
QNONE J

Fig. 4: Markov Chain for possible intruder
actions

A time of closest approach tpca is chosen
for when the aircraft will have a collision, and
the starting parameters of the encounter are

adjusted so that the aircraft collide at ttca.
Then, we randomly perturb the position of the
intruder by some a random number of units in
a random direction. The size of the perturba-
tion is chosen uniformly at random from the
range (0, d). The larger we make d, the fewer
NMACS we will have in our set of encounters.

C. Experiments

We first created a base set of hyperparame-
ters for the DQN algorithm. The hyperparame-
ters are recorded in Appendix B. This base set
policy was tuned by trying different architec-
tures and reward parameters until the learned
policy was qualitatively reasonable. The fol-
lowing experiments are aimed at modifying this
base setup and measuring what effect this has
on the performance of the learned policy. The
base policy was training against an intruder that
took random actions at each timestep.

We evaluate the performance of a policy by:

1) P(NMAC) Proportion of encounters that
had an NMAC. We define an NMAC to
occur when the aircraft get closer than
500 units of each other. The lower our
P(NMAC) the better.

2) P(Alert) Proportion of time with alerts
per episode. We want to issue as few
alerts as possible, while issuing enough
alerts to avoid NMACs. This creates a
tension between P(NMAC) and P(Alert).

3) P(Reversal) Proportion of alerts that are
reversals of the previous alert. For exam-
ple, if the previous alert was a RIGHT,
issuing a LEFT next is a reversal. We
want to keep this number as low as
possible.

We ran the following experiments:

1) Intruders with none, sticky, single action,
and random policy compared with the
base policy and the control where no
action is taken.

2) Training set of encounters with (5, 10, 15,
25, 50) percent of encounters including
an NMAC.

3) Weights on the shaping reward of (le-4,
3e-4, le-3, 3e-2, le-2).

We made a set of 5000 encounters to evaluate
each learned policy. This set of encounters is
composed of 1/4 of each encounter (no action,
single action, sticky, and random). Fig. 5-7
illustrates the performance of each of the three
experiments with respect to the proportion of
encounters that had a NMAC (fewer NMACs

are better). The other performance metrics (pro-
portion of alerts and reversals) for the three
experiments are included in Appendix C. We
also show our learning curves as measured by
the reward per episode as a function of the
number of training steps taken for the three
experiments in Fig. 8-10. The results indicate
that “random” and “’sticky” intruder behaviors
perform best for training a policy. Similarly, the
values in the mid-range of NMAC proportion
and reward shaping weights seemed to work
best. We think that putting these improvements
together and testing how they interact is a
viable path for further work. Furthermore, the
learning curves indicate that the rewards are
increasing as training is performed, which is
a good sign that the agent is learning.

Collision Rate by Training Behavior

NMAC Rate

Sticky

None Random single

Intruder Behavior

0.00

Control

Fig. 5: Percentage of NMACs observed using
policies learned from training with different
intruder behaviors

Collision Rate by Training Collisions

o
=

NMAC Rate

o
S
&

0.15 0.25 05
NMAC Training Proportion

0.05 0.1

Fig. 6: Percentage of NMACs observed using
policies learned from training set containing
various proportions of NMACs themselves

IX. 3D CONTINUOUS STATE SPACE

We limit the dynamics to the horizontal 2D
plane for three reasons:

1) The state space is large enough that any
approaches are already very computation-
ally taxing. Generally, the larger the state
space, the longer it takes the policy to

Collision Rate by Shaping Reward

030
025
020
015
0.10
-ANEN
0.00

Control 0.01 0.003 0.001 0.0003 0.0001
Shaping Reward

NMAC Rate

Fig. 7: Percentage of NMACs observed using
policies learned from training with different
reward shaping weights

Intruder Behavior
—— Sticky Policy
—60 —— Random

—— Single Action

_70, —— None
0 20000 40000 60000 80000 100000
Steps

Fig. 8: Learning Curve for different intruder
behaviors

Percent of NMAC in Training Set
— 5%
— 10%
— 15%
— 25%
— 50%

"0 20000 40000 60000 80000 100000
Steps

Fig. 9: Learning Curve for different percentages
of NMAC encounters in the training set

converge. We had a lot of experiments
to run with very low computational re-
sources, which was a big detractor from
using 3D.

2) The 2D state space is very similar to
the 3D state space. We just need to add
a few more state variables and actions
to get a 3D state-space. The lessons we
learned from reward shaping, encounter

200 Shaping Reward Weight
—— 0.0001
—250+ —— 0.0003
—— 0.001
—300 1 — 0,003

— 0.01

0 20000 40000 60000 80000 100000
Steps

Fig. 10: Learning Curve for different reward
shaping weight parameters

geometries, and NMAC proportions can
be carried over directly to the 3D space
with minor modifications.

3) There are fewer parameters to adjust than
in the 3D state space (fewer actions,
smaller value function neural network,
etc.). With larger state and action spaces,
there is more variance in the policies
learned, and more hyperparameters and
rewards to tune. We decided that the
time spent tuning hyperparameters was
not worth the small gains we would get
by moving to 3D.

X. CONCLUSION

In this work, we have presented findings
on the training of aircraft avoidance collision
system in a discrete and continuous space.
We contributed a novel Python environment in
which to simulate aircraft, which can be used
in future work to research the aircraft collision
avoidance problem. We also presented empir-
ical results comparing the effects of different
simulated training data on the performance of
the collision avoidance policies.

XI. COLLABORATION

Osmany was the project leader and guided
the research and coding. He created the grid
world and continuous space simulation envi-
ronments, and designed and coded the exper-
iments for the continuous state-space. Moham-
mad worked on the visualization of the grid-
world environment, and the creation of valida-
tion encounters for the gridworld environment.
As our project focus shifted, most of his work
did not make it into the report. Alexander fo-
cused on the gridworld environment and policy
sensitivity to rewards in this environment.

All team members participated in the discus-
sion, supported the model training, and con-
tributed to the milestones, the poster, and the
final report.

REFERENCES

[1] Mykel J. Kochenderfer and James P.
Chryssanthacopoulos. “Robust Airborne
Collision Avoidance through Dynamic
Programming”. In: 2011.

[2] Kyle Julian et al. “Policy compression
for aircraft collision avoidance systems”.
In: Sept. 2016, pp. 1-10. po1: 10.1109/
DASC.2016.7778091.

[3] Zhuora Yang, Yuchen Xie, and Zhao-
ran Wang. “A theoretical analysis of
deep Q-learning”. In: arXiv preprint
arXiv:1901.00137 (2019).

[4] Richard S Sutton and Andrew G Barto.
Reinforcement Learning: An Introduc-
tion. Cambridge, Massachusetts: The MIT
Press, 2018.

[5] Volodymyr Mnih et al. Mnih2015.
doi:10.1038/nature14236. 2015.

[6] Prafulla Dhariwal et al. OpenAl Baselines.
https://github.com/openai/baselines. 2017.

[71 Rachael E Tompa et al. “Collision avoid-
ance for unmanned aircraft using co-
ordination tables”. In: 2016 IEEE/AIAA
35th Digital Avionics Systems Conference
(DASC). 1IEEE. 2016, pp. 1-9.

[8] Andrew J Weinert et al. Uncorrelated
encounter model of the national airspace
system, version 2.0. Tech. rep. Mas-
sachusetts Inst of Tech Lexington Lincoln
Lab, 2013.

[9] Andrew Y Ng, Daishi Harada, and Stuart
Russell. “Policy invariance under reward
transformations: Theory and application
to reward shaping”. In: ICML. Vol. 99.
1999, pp. 278-287.

APPENDIX
A. Transition Matrices for MDP

The transition probabilities are modified de-
pendent on what kind of encounter is desired.
The transition matrices for each of the types
of encounters we generated are provided below
(Rows numbers to actions are 0: NONE, 1:
LEFT, 2: RIGHT):

Random
1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

One Act

1 0 0
1/25 24/25 0
1/25 0 24/25

Sticky
14/15 1/30 1/30
1/30 14/15 1/30
1/30 1/30 14/15
No Act

O O =
o = O
= o O

B. Hyperparameters

« Total timesteps: 100,000

o Optimizer: Adam

o Learning Rate: 0.0005

o Experience replay buffer size: 30,000

o Q-network structure: 3 hidden layers of 64
ReLU units each.

o Discount factor : 0.99

o Target network update frequency: 500

o Exploration factor e: 1 to 0.01 annealed
linearly over the first 30,000 timesteps.

o Batch size: 64

¢ Training frequency: Every step.

C. Policy Performance

Intruder behavior experiment

Alerts by Training Behavior

Alerts Per Encounter

8

Control None Random Single Sticky
Intruder Behavior

Fig. 11: Percentage of alerts observed using
policies learned from training with different
intruder behaviors

Reversals by Training Behavior

08

06

04

Reversals Per Encounter

0.2

00 - [

Control None Random Single Sticky
Intruder Behavior

Fig. 12: Percentage of reversals observed using
policies learned from training with different
intruder behaviors

Percent of NMAC encounters in training

set experiment

Alerts Per Encounter by Training Collisions

200

150

100

0
05 01 025 05

Control 0. A 0.15
NMAC Training Proportion
Fig. 13: Percentage of alerts observed using
policies learned from training set containing
various proportions of NMACs themselves

Alerts Per Encounter

8

Reversals Per Encounter by Training Collisions

06
g 05
£
5
g
S 04
)
o
2 03
T
4
[
5 0.2
g o

) .

00 J— [

Control 005 01 015 025 05

NMAC ;Fraining Proportion

Fig. 14: Percentage of reversals observed using
policies learned from training set containing
various proportions of NMACs themselves

Reward shaping experiment

10

Alerts by Shaping Reward

200
150
100

0

Control 0.01 0.003 0.001 0.0003 0.0001
Shaping Reward

Alerts Per Encounter

8

Fig. 15: Percentage of alerts observed using
policies learned from training with different
reward shaping weights

Reversals by Shaping Reward

0.0 I I

Control 0.01 0.003 0.001 0.0003 0.0001
Shaping Reward

1<) o o
) w =

Reversals Per Encounter

=3

Fig. 16: Percentage of reversals observed using
policies learned from training with different
reward shaping weights

